Calibration of Piecewise Markov Models Using a Change-Point Analysis Through an Iterative Convex Optimization Algorithm.

نویسندگان

  • F Alarid-Escudero
  • E Enns
  • Y E Peralta-Torres
  • R Maclehose
  • K M Kuntz
چکیده

se incrementa en 2%(t= 3.779, p= 0.000). Respecto a la tenencia de seguro social la probabilidad de comprar medicamentos se reduce en -0.201 o un riesgo relativo de compra de 0.818 (Wald= 4.241, p= 0.039). ConClusiones: Existe una mayor vulnerabilidad de la población indígena, respecto al acceso a medicamentos. Se hace necesario desarrollar estrategias e intervenciones sanitarias para mejorar el acceso, disponibilidad y costo de medicamentos en Panamá.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

A trend filtering approach for change point detection in MOX gas sensors

Detecting changes in the response of metal oxide (MOX) gas sensors deployed in an open sampling system is a hard problem. It is relevant for applications such as gas leak detection in coal mines [1], [2] or large scale pollution monitoring [3],[4] where it is unpractical to continuously store or transfer sensor readings and reliable calibration is hard to achieve. Under these circumstances it i...

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

A Common Fixed Point Theorem Using an Iterative Method

Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G. Marino with particular choice of the sequence  ${alpha_{n}}$ in Krasonselskii-Mann algorithm, ${x}_{n+1}={alpha}_{n}{x}_{n}+(1-{alpha}_{n})T({x}_{n}),$ proved both weak and strong converging results. In this paper, we generalize thei...

متن کامل

Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2015